自分のキャリアをあれこれ考えながら、Pythonで様々なデータを分析していくブログです

(AutoGluon) Pythonで3つのAutoML環境を用意してみた

Python
Python

前回はmljarの仮想環境を作成しました。

(MLJAR) Pythonで3つのAutoML環境を用意してみた
AutoMLは機械学習のプロセス(データ加工〜モデル作成〜ハイパーパラメータチューニング)を全て自動実行してくれるツールになります。 有名なものだと、DataRobotというツールがありますが有償になります。 Pythonで無償で使えるもの...

今回はAutoGluonの仮想環境を作成します。

AutoGluon
Fast and Accurate ML in 3 Lines of Code Get Started Quick Prototyping, Build machine learning solutions on raw data in a...

AutoGluon requires Python version 3.7, 3.8, or 3.9. For troubleshooting the installation process, you can check the Installation FAQ.

22年6月現在、AutoGluonはPythonのバージョンが3.7, 3.8, 3.9が対象のようなので、Python 3.6 や 3.10をご利用の方はご注意ください。もしかしたら何かしらのエラーになるかも知れません。

WARNING: Do not install LibOMP via “brew install libomp” as LibOMP 12 and 13 can cause segmentation faults with LightGBM and XGBoost.

libompのバージョンが12と13だとsegmentation faultsエラーになる可能性があるようです。22年6月現在はbrew install libompをするとバージョン14がインストールされましたので問題はないかも知れません。

23/8/6追記
AutoGluonを最新版(0.8.2)にアップデートしたところ、segmentaton faultsエラーが出る様になってしまいました。

その場合はpipではなく、condaでのインストールを試しください。

conda create -n ag python=3.10
conda activate ag
conda install -c conda-forge mamba
mamba install -c conda-forge autogluon
引用: https://auto.gluon.ai/stable/install.html

私の環境だとpython3.10だとAttributeError: module 'torch' has no attribute '_six'のようなエラーが発生しました。python3.8に変更したら解消したのでMacbookのOSとの相性があるのかも知れません。(ちなみに10.15.7での動作確認です)


スポンサーリンク

AutoGluonの仮想環境を作成する

AutoGluonの仮想環境作成

# venv-mljarという名前の仮想環境を作成
python3.8 -m venv venv-autogluon

# activateし仮想環境内に入る
source venv-autogluon/bin/activate

# pip、wheel,setuptoolsのインストールもしくはアップグレード
(venv-autogluon) % python3 -m pip install pip wheel setuptools --upgrade

AutoGluonのインストール

# object detection用にpytorchのインストールでしょうか?
(venv-autogluon) % python3 -m pip install "torch>=1.0,<1.11+cpu" -f https://download.pytorch.org/whl/cpu/torch_stable.html
# autogluonのインストール
(venv-autogluon) % python3 -m pip install autogluon

# (Option) seabornのインストール
(venv-autogluon) % python3 -m pip install seaborn
Out[0]
Collecting autogluon
  Downloading autogluon-0.4.2-py3-none-any.whl (9.5 kB)
・・・省略・・・
Successfully installed MarkupSafe-2.1.1 Pillow-9.0.1 PyWavelets-1.3.0 absl-py-1.1.0 aiohttp-3.8.1 aiosignal-1.2.0 antlr4-python3-runtime-4.8 async-timeout-4.0.2 attrs-21.4.0 autocfg-0.0.8 autogluon-0.4.2 autogluon-contrib-nlp-0.0.1b20220208 autogluon.common-0.4.2 autogluon.core-0.4.2 autogluon.features-0.4.2 autogluon.tabular-0.4.2 autogluon.text-0.4.2 autogluon.vision-0.4.2 blis-0.7.7 boto3-1.24.2 botocore-1.27.2 cachetools-5.2.0 catalogue-2.0.7 catboost-1.0.6 certifi-2022.5.18.1 charset-normalizer-2.0.12 click-8.1.3 cloudpickle-2.1.0 colorama-0.4.4 contextvars-2.4 cycler-0.11.0 cymem-2.0.6 dask-2021.11.2 deprecated-1.2.13 distributed-2021.11.2 fairscale-0.4.6 fastai-2.5.6 fastcore-1.4.3 fastdownload-0.0.6 fastprogress-1.0.2 filelock-3.7.1 flake8-4.0.1 fonttools-4.33.3 frozenlist-1.3.0 fsspec-2022.5.0 gluoncv-0.10.5.post0 google-auth-2.6.6 google-auth-oauthlib-0.4.6 graphviz-0.20 grpcio-1.46.3 heapdict-1.0.1 huggingface-hub-0.7.0 idna-3.3 imageio-2.19.3 immutables-0.18 importlib-metadata-4.11.4 importlib-resources-5.7.1 jinja2-3.1.2 jmespath-1.0.0 joblib-1.1.0 jsonschema-4.6.0 kiwisolver-1.4.2 langcodes-3.3.0 lightgbm-3.3.2 locket-1.0.0 markdown-3.3.7 matplotlib-3.5.2 mccabe-0.6.1 msgpack-1.0.4 multidict-6.0.2 murmurhash-1.0.7 networkx-2.8.2 nptyping-1.4.4 numpy-1.22.4 oauthlib-3.2.0 omegaconf-2.1.2 opencv-python-4.5.5.64 packaging-21.3 pandas-1.3.5 partd-1.2.0 pathy-0.6.1 plotly-5.8.0 portalocker-2.4.0 preshed-3.0.6 protobuf-3.20.1 psutil-5.8.0 pyDeprecate-0.3.2 pyarrow-8.0.0 pyasn1-0.4.8 pyasn1-modules-0.2.8 pycodestyle-2.8.0 pydantic-1.8.2 pyflakes-2.4.0 pyparsing-3.0.9 pyrsistent-0.18.1 python-dateutil-2.8.2 pytorch-lightning-1.6.4 pytz-2022.1 pyyaml-6.0 ray-1.10.0 redis-4.3.3 regex-2022.6.2 requests-2.27.1 requests-oauthlib-1.3.1 rsa-4.8 s3transfer-0.6.0 sacrebleu-2.1.0 sacremoses-0.0.53 scikit-image-0.19.2 scikit-learn-1.0.2 scipy-1.7.3 sentencepiece-0.1.95 setuptools-59.5.0 six-1.16.0 smart-open-5.2.1 sortedcontainers-2.4.0 spacy-3.3.0 spacy-legacy-3.0.9 spacy-loggers-1.0.2 srsly-2.4.3 tabulate-0.8.9 tblib-1.7.0 tenacity-8.0.1 tensorboard-2.9.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 thinc-8.0.17 threadpoolctl-3.1.0 tifffile-2022.5.4 timm-0.5.4 tokenizers-0.12.1 toolz-0.11.2 torchmetrics-0.7.3 torchvision-0.11.3 tornado-6.1 tqdm-4.64.0 transformers-4.16.2 typer-0.4.1 typish-1.9.3 urllib3-1.26.9 wasabi-0.9.1 werkzeug-2.1.2 wrapt-1.14.1 xgboost-1.4.2 yacs-0.1.8 yarl-1.7.2 zict-2.2.0 zipp-3.8.0

何もなければそのままインストールが完了します。

ipykernelをインストール

my-venvのjupyter notebookから今回作成したvenv_autogluonの仮想環境を呼び出せるようにします。

(venv-autogluon) % python3 -m pip install ipykernel
(venv-autogluon) % python3 -m ipykernel install --user --name venv_autogluon --display-name "venv_autogluon"
Out[0]

Installed kernelspec venv_autogluon in /Users/hinomaruc/Library/Jupyter/kernels/venv_autogluon

スポンサーリンク

AutoGluonの動作確認

# 必要なライブラリをインポート
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from autogluon.tabular import TabularDataset, TabularPredictor
# データセットをデータフレームに読み込む
df = pd.read_csv("http://lib.stat.cmu.edu/datasets/boston_corrected.txt", encoding='Windows-1252',skiprows=9,sep="\t")
# モデリングに利用する変数 (autogluonは目的変数も一緒に渡してあげる)
anacols=[
        'CRIM' #  1人当たりの犯罪数
      , 'ZN'  # 町別の25,000平方フィート(7600m2)以上の住居区画の割合
      , 'INDUS'  #町別の非小売業が占める土地面積の割合
      , 'CHAS' # チャールズ川沿いかどうか
      , 'NOX' # 町別の窒素酸化物の濃度(1000万分の1)
      , 'RM' # 住居の平均部屋数
      , 'AGE' # 持ち家住宅比率
      , 'DIS' # 5つのボストン雇用センターへの重み付き距離
      , 'RAD' # 町別の環状高速道路へのアクセスのしやすさ
      , 'TAX' # 町別の$10,000ドルあたりの固定資産税率
      , 'PTRATIO' #町別の生徒と先生の比率
      , 'B' # 1000*(黒人人口割合 - 0.63)^2
      , 'LSTAT' #     貧困人口割合
      , 'CMEDV' # 目的変数 (住宅価格中央値)
    ]
# 変数選択
X = df[anacols]
# 訓練データとテストデータへ分割する
X_train, X_test = train_test_split(X, test_size=0.2, random_state=100)
# モデル作成とfit
predictor = TabularPredictor(label="CMEDV", path="RESULT_AUTOGLUON").fit(X_train, time_limit = 600)
Out[0]

    Beginning AutoGluon training ... Time limit = 600s
    AutoGluon will save models to "RESULT_AUTOGLUON/"
    AutoGluon Version:  0.4.2
    Python Version:     3.8.13
    Operating System:   Darwin
    Train Data Rows:    404
    Train Data Columns: 13
    Label Column: CMEDV
    Preprocessing data ...
    AutoGluon infers your prediction problem is: 'regression' (because dtype of label-column == float and many unique label-values observed).
        Label info (max, min, mean, stddev): (50.0, 5.0, 22.6297, 9.00998)
        If 'regression' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
    Using Feature Generators to preprocess the data ...
    Fitting AutoMLPipelineFeatureGenerator...
        Available Memory:                    8842.8 MB
        Train Data (Original)  Memory Usage: 0.04 MB (0.0% of available memory)
        Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
        Stage 1 Generators:
            Fitting AsTypeFeatureGenerator...
                Note: Converting 1 features to boolean dtype as they only contain 2 unique values.
        Stage 2 Generators:
            Fitting FillNaFeatureGenerator...
        Stage 3 Generators:
            Fitting IdentityFeatureGenerator...
        Stage 4 Generators:
            Fitting DropUniqueFeatureGenerator...
        Types of features in original data (raw dtype, special dtypes):
            ('float', []) : 10 | ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', ...]
            ('int', [])   :  3 | ['CHAS', 'RAD', 'TAX']
        Types of features in processed data (raw dtype, special dtypes):
            ('float', [])     : 10 | ['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', ...]
            ('int', [])       :  2 | ['RAD', 'TAX']
            ('int', ['bool']) :  1 | ['CHAS']
        0.2s = Fit runtime
        13 features in original data used to generate 13 features in processed data.
        Train Data (Processed) Memory Usage: 0.04 MB (0.0% of available memory)
    Data preprocessing and feature engineering runtime = 0.27s ...
    AutoGluon will gauge predictive performance using evaluation metric: 'root_mean_squared_error'
        To change this, specify the eval_metric parameter of Predictor()
    Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 323, Val Rows: 81
    Fitting 11 L1 models ...
    Fitting model: KNeighborsUnif ... Training model for up to 599.73s of the 599.72s of remaining time.
        -6.4382  = Validation score   (root_mean_squared_error)
        0.03s    = Training   runtime
        0.02s    = Validation runtime
    Fitting model: KNeighborsDist ... Training model for up to 599.66s of the 599.65s of remaining time.
        -6.1516  = Validation score   (root_mean_squared_error)
        0.03s    = Training   runtime
        0.02s    = Validation runtime
    Fitting model: LightGBMXT ... Training model for up to 599.6s of the 599.59s of remaining time.
        -2.99    = Validation score   (root_mean_squared_error)
        0.36s    = Training   runtime
        0.0s     = Validation runtime
    Fitting model: LightGBM ... Training model for up to 599.21s of the 599.2s of remaining time.
        -2.8254  = Validation score   (root_mean_squared_error)
        0.55s    = Training   runtime
        0.0s     = Validation runtime
    Fitting model: RandomForestMSE ... Training model for up to 598.63s of the 598.62s of remaining time.
        -2.7775  = Validation score   (root_mean_squared_error)
        0.84s    = Training   runtime
        0.06s    = Validation runtime
    Fitting model: CatBoost ... Training model for up to 597.66s of the 597.65s of remaining time.
        -2.9889  = Validation score   (root_mean_squared_error)
        146.62s  = Training   runtime
        0.0s     = Validation runtime
    Fitting model: ExtraTreesMSE ... Training model for up to 450.97s of the 450.96s of remaining time.
        -2.8397  = Validation score   (root_mean_squared_error)
        0.77s    = Training   runtime
        0.07s    = Validation runtime
    Fitting model: NeuralNetFastAI ... Training model for up to 450.07s of the 450.06s of remaining time.
        -3.6056  = Validation score   (root_mean_squared_error)
        10.01s   = Training   runtime
        0.02s    = Validation runtime
    Fitting model: XGBoost ... Training model for up to 440.01s of the 440.0s of remaining time.
        -3.6771  = Validation score   (root_mean_squared_error)
        1.61s    = Training   runtime
        0.01s    = Validation runtime
    Fitting model: NeuralNetTorch ... Training model for up to 438.38s of the 438.37s of remaining time.
        -2.419   = Validation score   (root_mean_squared_error)
        8.37s    = Training   runtime
        0.02s    = Validation runtime
    Fitting model: LightGBMLarge ... Training model for up to 429.98s of the 429.97s of remaining time.

    [1000]  valid_set's rmse: 2.95112

        -2.9507  = Validation score   (root_mean_squared_error)
        1.73s    = Training   runtime
        0.02s    = Validation runtime
    Fitting model: WeightedEnsemble_L2 ... Training model for up to 360.0s of the 427.34s of remaining time.
        -2.3166  = Validation score   (root_mean_squared_error)
        0.92s    = Training   runtime
        0.0s     = Validation runtime
    AutoGluon training complete, total runtime = 173.67s ... Best model: "WeightedEnsemble_L2"
    TabularPredictor saved. To load, use: predictor = TabularPredictor.load("RESULT_AUTOGLUON/")

Best modelは WeightedEnsemble_L2 のようです。
モデリング過程はRESULT_AUTOGLUONフォルダに出力されます。

# 精度確認もevaluateメソッドで可能。
performance = predictor.evaluate(X_test)
Out[0]
    Evaluation: root_mean_squared_error on test data: -2.961702681529006
        Note: Scores are always higher_is_better. This metric score can be multiplied by -1 to get the metric value.
    Evaluations on test data:
    {
        "root_mean_squared_error": -2.961702681529006,
        "mean_squared_error": -8.771682773776105,
        "mean_absolute_error": -2.033792951995251,
        "r2": 0.9090914974158019,
        "pearsonr": 0.9556675138049998,
        "median_absolute_error": -1.2706268310546873
    }
# leaderboardメソッドで各アルゴリズムの精度比較も可能
predictor.leaderboard(X_test, silent=True)
Out[0]

model score_test score_val pred_time_test pred_time_val fit_time pred_time_test_marginal pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order
0 WeightedEnsemble_L2 -2.961703 -2.316560 0.169413 0.048556 158.183463 0.008153 0.001808 0.916766 2 True 12
1 NeuralNetTorch -3.110607 -2.419009 0.025044 0.017519 8.365360 0.025044 0.017519 8.365360 1 True 10
2 RandomForestMSE -3.277457 -2.777463 0.116664 0.062859 0.843504 0.116664 0.062859 0.843504 1 True 5
3 LightGBMLarge -3.386568 -2.950684 0.077145 0.020441 1.726655 0.077145 0.020441 1.726655 1 True 11
4 CatBoost -3.459222 -2.988936 0.046851 0.004399 146.622863 0.046851 0.004399 146.622863 1 True 6
5 ExtraTreesMSE -3.492606 -2.839712 0.106429 0.072474 0.772137 0.106429 0.072474 0.772137 1 True 7
6 LightGBMXT -3.538415 -2.990006 0.018141 0.004498 0.364199 0.018141 0.004498 0.364199 1 True 3
7 LightGBM -3.593480 -2.825365 0.012220 0.004389 0.551819 0.012220 0.004389 0.551819 1 True 4
8 XGBoost -3.930415 -3.677135 0.014127 0.009946 1.606579 0.014127 0.009946 1.606579 1 True 9
9 NeuralNetFastAI -3.931923 -3.605609 0.033548 0.021203 10.008209 0.033548 0.021203 10.008209 1 True 8
10 KNeighborsDist -6.956292 -6.151583 0.009221 0.019630 0.030075 0.009221 0.019630 0.030075 1 True 2
11 KNeighborsUnif -7.449029 -6.438193 0.007475 0.017201 0.029536 0.007475 0.017201 0.029536 1 True 1
# テストデータにモデルを適用し住宅価格の予測をする
predictor.predict(X_test)
Out[0]

    198    33.150562
    229    31.117903
    502    20.255878
    31     17.025032
    315    19.507862
             ...    
    166    43.536423
    401    11.609201
    368    43.419445
    140    15.259549
    428    12.945223
    Name: CMEDV, Length: 102, dtype: float32
# 予測結果と正解データの比較
from matplotlib import pyplot as plt
plt.plot(X_test["CMEDV"], predictor.predict(X_test),'.')
plt.xlabel("True value")
plt.ylabel("Predicted value")
Out[0]

png

# evaluateメソッドで確認した精度と比較
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
print("MAE(test)", str(mean_absolute_error(X_test["CMEDV"], predictor.predict(X_test))))
print("RMSE(test)",str(np.sqrt(mean_squared_error(X_test["CMEDV"],predictor.predict(X_test)))))
Out[0]
    MAE(test) 2.033792951995251
    RMSE(test) 2.961702681529006

evaluateメソッドで確認した精度と同じようです。精度はmljarの方が良いようです。

スポンサーリンク

精度比較

xgboost (gridsearchあり)

旧ブログでボストンの住宅価格のデータセットで色々なモデルを試しました。その中でもxgboost(グリッドサーチあり)が一番精度がよかったのでautomlとの比較対象とします。

結果:
MAE(test) 2.07
RMSE(test) 2.89

AutoGluon

結果:
MAE(test) 2.03
RMSE(test) 2.96

xgboost(grid searchあり)と比較して、MAEはAutoGluonの方がよくて、RMSEはxbgoost(grid searchあり)の方が良さそうです。

mljar

結果:
MAE(test): 1.81
RMSE(test) 2.76

mljarの方がxgboost(grid searchあり)、autogluonと比較してMAEとRMSE両方とも精度がいいですね。

タイトルとURLをコピーしました